Thyroid cancer after Chernobyl

KAZAKOV V. S.

Nature
Nature 359, 21, 1992

II-3

KOIKE Kenichi, YABUHARA Akihiko, YANG Feng-Chun, SHIOHARA Masaaki, SAWAI Nobukuni, SUGENOYA Akira, IIDA Futoshi, KOYAMA Yutaka, TAKANO Kazumi, TAKAHASHI Takushi, KAMATA Minoru, KOIZUMI Yoshinobu, ANATOLIEBNA Altusina Tatiana, SKIDANENKO Gennady Ivanovich, KOMIYAMA Atsushi
International journal of hematology 61(3), 139-145, 1995-04

Thyroid cancer: a review of treatment and follow-up
VINI Louiza, HARMER Clive, MCCREADY V. R.
Annals of nuclear medicine 10(1), 1-7, 1996-02

Frequent natural killer cell abnormality in children in an area highly contaminated by the Chernobyl accident

Vincent Carelli, Robert F. Tomatis, Thomas G. Baglioni, John W. Schusterman, Carol A. Sweeney, Sarah J. Seagard, Roger L. Ransohoff, Mark A. Samuels, David J. Byar, David P. Byar, and Lawrence J. Benson
Cancer 81(2), 257-265, 1998-01

Thyroid cancer: a review of treatment and follow-up
VINI Louiza, HARMER Clive, MCCREADY V. R.
Annals of nuclear medicine 10(1), 1-7, 1996-02
Childhood Thyroid Cancer: Comparison of Japan and Belarus

SHIRAHIGE Yutaka, ITO Masahiro, ASHIZAWA Kiyoto, MOTOMURA Tomoko, YOKOYAMA Naokata, NAMBA Hiroyuki, FUKATA Shuji, YOKOZAWA Tamotsu, ISHIKAWA Naofumi, MIMURA Takashi, YAMASHITA Shunichi, SEKINE Ichiro, KUMA Kanji, ITO Kunihiko, NAGATAKI Shigenobu

Endocrine journal 45(2), 203-209, 1998

Mitochondrial DNA and Human Thyroid Diseases

ROGOOUNOVITCH TATIANA, SAENKO VLADIMIR, YAMASHITA SHUNICHI

Endocrine journal 51(3), 265-277, 2004-06-01

Latest Knowledge on Radiological Effects: Radiation Health Effects of Atomic Bomb Explosions and Nuclear Power Plant Accidents

Nagataki Shigenobu

: hoken buturi 45(4), 370-378, 2010-12-01

Prevention of Internal Exposure to Cesium-137 (¹³⁷Cs) Radiation in Inhabitants of an Area Contaminated by the Chernobyl Accident

Kadzumi TAKANO, Department of Hygiene Shinshu University School of Medicine

Environmental health and preventive medicine 1(1), 28-32, 1996-04

Age-dependent Exposure to Radioactive Iodine (¹³¹I) in the Thyroid and Total Body of Newborn, Pubertal and Adult Fischer 344 Rats

Nitta Yumiko, Endo Satoru, Fujimoto Nariaki, KAMIYA Kenji, HOSHI Masaharu

Journal of radiation research 42(2), 143-155, 2001-06-15

Nuclear Abnormalities in Aspirated Thyroid Cells and Chromosome Aberrations in Lymphocytes of Residents Near the Semipalatinsk Nuclear Test Site

Takeichi Nobuo, Hoshi Masaharu, Iida Shojo, TANAKA Kimio, HARADA Yuka, ZHUMADILOV Zhaxybay, CHAIZHUNUSOVA Nailya, APSALIKOV Kazbek N., NOSO Yoshhiro, INABA Toshiya, TANAKA Kenichi, ENDO Satoru

Journal of radiation research 47, A171-A177, 2006-02-28
It is estimated that more than 6,000 cases of thyroid cancer were caused by the disaster. “The Chernobyl accident is a clear example of the health consequences experienced by a large population exposed to radioactive iodine,” says Memorial Sloan Kettering physician-scientist James A. Fagin. “The people who were exposed, especially those who were children at the time, have been monitored very closely, and there’s been a lot of interest to see what happens to their risk of cancer over time.” Iodine-131, one of the main isotopes that was released, is not very stable and half of it had decayed after a little more than a week. Therefore, although exposure was high, it lasted for a relatively short period of time. Monitoring of thyroid cancer continues in the three countries, Belarus, the Russian Federation (four regions) and Ukraine, where there were higher levels of radionuclide deposition after the Chernobyl accident. The data on the incidence of thyroid cancer have been analysed in a large number of epidemiological studies published in peer-reviewed scientific journals. [B4] evaluated the dose–response relationship for thyroid cancer among 12,514 members of the UkrAm cohort. The arithmetic mean of the dose to the thyroid from the incorporation of 131I was estimated to be 0.65 Gy. After the first screening (prevalence study [T2]), three biennial thyroid examinations were conducted between 2001 and May 2007 [B4]. Jargin, Sergei V. (2011) “THYROID CANCER AFTER CHERNOBYL: OBFUSCATED TRUTH,” Dose-Response: An International Journal: Vol. 9 : Iss. 4 , Article 5. Available at: https://scholarworks.umass.edu/dose_response/vol9/iss4/5. This Article is brought to you for free and open access by ScholarWorks@UMass Amherst. Causes and mechanisms of the registered incidence increase of pediatric thyroid cancer (TC) after the Chernobyl accident, unrelated to the ionizing radiation, were recently reviewed among other topics by Prof. Z. Jaworowski (2010). The main body of evidence (Cardis et al. 2005; Tronko et al. 2006; Davis et al. ...)